Publication Date May 31, 2017 | National Geographic

Antarctica Is Melting, and Giant Ice Cracks Are Just the Start

Antarctica
A startling sunset reddens the Lemaire Channel, off the west coast of the Antarctic Peninsula. The continent’s coastal ice is crumbling as the sea and air around it warm. Photo: Camille Seaman
A startling sunset reddens the Lemaire Channel, off the west coast of the Antarctic Peninsula. The continent’s coastal ice is crumbling as the sea and air around it warm. Photo: Camille Seaman

Seen from above, the Pine Island Ice Shelf is a slow-motion train wreck. Its buckled surface is scarred by thousands of large crevasses. Its edges are shredded by rifts a quarter mile across. In 2015 and 2016 a 225-square-mile chunk of it broke off the end and drifted away on the Amundsen Sea. The water there has warmed by more than a degree Fahrenheit over the past few decades, and the rate at which ice is melting and calving has quadrupled.

On the Antarctic Peninsula, the warming has been far greater—nearly five degrees on average. That’s why a Delaware-size iceberg is poised to break off the Larsen C Ice Shelf and why smaller ice shelves on the peninsula have long since disintegrated entirely into the waters of the Weddell Sea. But around the Amundsen Sea, a thousand miles to the southwest on the Pacific coast of Antarctica, the glaciers are far larger and the stakes far higher. They affect the entire planet.

The Pine Island Ice Shelf is the floating terminus of the Pine Island Glacier, one of several large glaciers that empty into the Amundsen Sea. Together they drain a much larger dome of ice called the West Antarctic Ice Sheet, which is up to two and a half miles thick and covers an area twice the size of Texas. The ice sheet is draped over a series of islands, but most of it rests on the floor of a basin that dips more than 5,000 feet below sea level. That makes it especially vulnerable to the warming ocean. If all that vulnerable ice were to become unmoored, break into pieces, and float away, as researchers increasingly believe it might, it would raise sea level by roughly 10 feet, drowning coasts around the world.

The ice sheet is held back only by its fringing ice shelves—and those floating dams, braced against isolated mountains and ridges of rock around the edges of the basin, are starting to fail. They themselves don’t add much to sea level, because they’re already floating in the water. But as they weaken, the glaciers behind them flow faster to the sea, and their edges retreat. That’s happening now all around the Amundsen Sea. The Pine Island Ice Shelf, about 1,300 feet thick over most of its area, is a dramatic case: It thinned by an average of 150 feet from 1994 to 2012. But even more worrisome is the neighboring Thwaites Glacier, which could destabilize most of the West Antarctic Ice Sheet if it collapsed.

“These are the fastest retreating glaciers on the face of the Earth,” says Eric Rignot, a glaciologist at the NASA Jet Propulsion Laboratory in Pasadena, California. Rignot has studied the region for more than two decades, using radar from aircraft and satellites, and he believes the collapse of the West Antarctic Ice Sheet is only a matter of time. The question is whether it will take 500 years or fewer than a hundred—and whether humanity will have time to prepare.

“We have to get these numbers right,” Rignot says. “But we have to be careful not to waste too much time doing that.”