Goulden, M. L., Anderson, R. G., Bales, R. C., Kelly, A. E., Meadows, M., Winston, G. C.

Journal of Geophysical Research: Biogeosciences

Published date September 6, 2012

Evapotranspiration along an elevation gradient in California's Sierra Nevada

  • Combines observations from four eddy covariance towers with remote sensing to better understand the altitudinal patterns of climate, plant phenology, Gross Ecosystem CO2Uptake, and Evapotranspiration (ET) around the Upper Kings River basin in the southern Sierra Nevada Mountains
  • Finds precipitation (P) increased with elevation to ∼500 m, and more gradually at higher elevations, while vegetation graded from savanna at 405 m to evergreen oak and pine forest to mid-montane forest to subalpine forest at 2700 m
  • Finds CO2 uptake and transpiration at 405 m peaked in spring (March to May) and declined in summer; gas exchange at 1160 and 2015 m continued year-round; gas exchange at 2700 m peaked in summer and ceased in winter
  • Finds a phenological threshold occurred between 2015 and 2700 m, associated with the development of winter dormancy
  • Finds that annual ET and Gross Primary Production were greatest at 1160 and 2015 m and reduced at 405 m coincident with less P, and at 2700 m coincident with colder temperatures
  • States the large decline in ET above 2015 m raises the possibility that an upslope redistribution of vegetation with climate change could cause a large increase in upper elevation ET
  • Extrapolates ET to the entire basin using remote sensing, finding: the 2003–11 P for the entire Upper Kings River basin was 984 mm y−1 and the ET was 429 mm y−1, yielding a P-ET of 554 mm y−1, which agrees well with the observed Kings River flow of 563 mm y−1
  • Finds ET averaged across the entire basin was nearly constant from year to year