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Introduction. California has been under drought 
conditions since 2012, and the drought worsened 
considerably in the winter of 2013/14 (e.g., Wang et 
al. 2014), which fueled an extreme fire season in 2014 
(Hart et al. 2015). The early onset of the 2014 dry sea-
son (Supplemental Fig. S2.1) fueled an extraordinary 
jump in wildfires. Between 1 January and 20 Septem-
ber, the California Department of Forestry and Fire 
Protection reported thousands more fires than the 
five-year average (www.fire.ca.gov). In early August, 
a state of emergency was declared for a single wildfire 
that had burned 32 000 acres (http://gov.ca.gov/news 
.php?id=18645). This unusual fire season is expected 
to continue well through 2015. 

The connection between a warming climate and 
lengthened fire seasons may seem intuitive, given 
the general tendency toward a hot-and-dry climate 
scenario and an earlier snowmelt (Westerling et al. 
2006). However, what is not yet fully understood is 
the extent to which the projected wetter climate in 
California towards the latter part of the 21st century 
(Neelin et al. 2013) could affect wildfire risk in the 
future; this historical drought and unusual fire season 
also calls attention to possible impacts from human-
induced climate change.

Satellite merged data of burned area from the 
fourth generation of the Global Fire Emissions Data-
base (GFED4; Giglio et al. 2013) was analyzed (online 
supplemental material). Because the GFED4 product 
may underestimate wildfire extent due to its limit in 
the minimum detectable burned area and obscura-
tion by cloud cover, the Keetch–Byram Drought index 

(KBDI; Janis et al. 2002; Keetch and Byram 1968), 
routinely used by the United States Forest Service 
for monitoring fire risk, was included as well. The 
KBDI is computed with both the observational and 
simulated daily precipitation and maximum surface 
temperature. Observational dataset is from the North 
American Land Data Assimilation phase 2 (NLDAS2; 
Xia et al. 2012). 

Fire extent of 2014. Figure 2.1 shows the annual 
mean KBDI, the fractional area under extreme fire 
risk (online supplemental material), and the burned 
area averaged for entire California (Fig. 2.1a) and 
northern California—north of 39°N (Fig. 2.1b). Both 
the KBDI and the extreme fire risk exhibit a steady 
increase over California since 1979 despite the rather 
large interannual fluctuation. In terms of area burned 
in GFED4, 2014 ranks the sixth largest in the entire 
state and second in northern California; but in terms 
of the KBDI and the extreme fire risk, 2014 ranks 
first in both the entire state and northern California. 
Also noteworthy is that the two largest burned areas 
in northern California, over the 18-year record of 
GFED4, occurred in 2012 and 2014. Spatially, the 
area of higher fire risk in 2014, that is, a KBDI value 
higher than 400, extends further north compared to 
that of 2012 (Figs. 2.1e,f), consistent with the burned 
area (Figs. 2.1c,d).

Attribution and projection. Wildfire simulations and 
projections are generally performed using stand-alone 
vegetation models (e.g., Brown et al. 2004; Cook et 
al. 2012; Luo et al. 2013; Scholze et al. 2006; Yue et al. 
2013) driven by global climate model output. While 
the advantage of using a stand-alone vegetation 
model lies in its application to high spatial resolution 
through downscaling, disadvantages include added 
uncertainty produced from downscaling (e.g., Shukla 
and Lettenmaier 2013; Yoon et al. 2012). In this study, 
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we analyzed both the KBDI and wildfire probabilities 
computed directly within the Community Earth 
System Model version 1 (CESM1), which are primar-
ily driven by the dryness of the surface soil and the 
availability of fuel load, that is, vegetation (Thonicke 
et al. 2001). Although CESM1’s spatial resolution of 
1-degree is relatively coarse, the model does simulate 
well the climate drivers of fire, such as precipitation 
and surface air temperature of California (Wang et al. 
2014). Further, the CESM1 has produced 30 members 
(online supplemental material) spanning historical 
(1920–2005) and future periods (2006–80; based on 
RCP8.5 scenario), together with a pre-industrial sim-
ulation of 1800 years. These model outputs provide a 
unique opportunity for the detection and attribution 
study conducted here to assess wildfire probabilities 
under climate change. 

Projections for California did show a steady in-
crease of the fire risk based solely upon the KBDI 
(Fig. 2.2a) and are consistent with recent studies 
(Dennison et al. 2014; Lin et al. 2014; Luo et al. 2013; 
van Mantgem et al. 2013) that indicate increased oc-
currence of area burned and wildfire intensity and 
duration over the western United States. The CESM1 

projects only a slight increase in annual precipitation 
accompanied with increasing surface warming after 
1990 through 2070 (Supplemental Figs. S2.2b,c), con-
sistent with those produced by the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) ensembles 
(Neelin et al. 2013). At face value, these simulations 
of a slightly wetter climate from 1990 onward could 
explain the cessation of the simulated fire probability 
increase at the end of 20th century (Supplemental Fig. 
S2.2c). However, the KBDI and the extreme fire risk 
measures, computed here in terms of the fractional 
area and the extreme fire danger days (Figs. 2.2b,c), 
do show a steady and rapid increase from early 1990s 
and 2000s.

To what extent can the change of the extreme fire 
risk over California be attributed to global warming? 
First, we need to understand how much fluctuation 
is caused by natural climate variability alone (e.g., 
Kitzberger et al. 2007). Analyzing the 1800-year 
pre-industrial simulation of the CESM1 by treating 
the simulation as 18 member ensembles of 100-year 
simulation, the pre-industrial simulations envelops 
entirely both the KBDI and the extreme fire risk mea-
sures f luctuation for the period spanning 1920–80 

Fig. 2.1. Annual mean of the KBDI in black, fraction of the area that are under the extreme fire risk in red, which 
is defined as KBDI > 600, and burned area from GFED4 in orange averaged for (a) California and (b) Northern 
California. Spatial distribution of burned area in hectare (ha) from GFED4 averaged for (c) 2014 and (d) 2012, 
and corresponding the annual mean KBDI in (e) and (f).
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(Fig. 2.2). Beginning in the 1990s—the later part of 
the historical simulation—a clear separation emerges 
between the extreme fire risks driven by the anthro-
pogenic climate forcing and that of natural climate 
variability. However, 2014 occurred in a period of 
rapidly increasing extreme fire risk. The pace of 
increasing extreme fire risk according to simulation 
has accelerated since the early 21st century and is 

expected to surpass the range of natural 
climate variability. Observations show 
much faster increases of the KBDI and 
extreme fire risk measures (gray lines 
in Fig. 2.2).

The accelerated increase in the KBDI 
and the extreme fire risk in relation to 
the projected wetter climate in Califor-
nia is intriguing. To increase extreme 
fire risk, two basic situations need to be 
present: one is abundant fuel load (i.e., 
surface vegetation coverage enhanced 
through precipitation), and the other is 
the occurrence of a hot-and-dry climate 
regime or drought to dry the vegeta-
tion. A process called CO2 fertilization 
(Donohue et al. 2013) tends to increase 
vegetation activity simply through the 
uptake of an increasing atmospheric 
CO2. Under such a scenario along with 
a wetter climate, vegetation growth 
would increase and subsequently sup-
ply sufficient fuel load. Though popu-
lation growth and associated urban 
area change are accounted for in the 
model, the CESM1 produced fire prob-
ability does not account for incidence 
of human-caused fire ignition, which 
correlate with population growth. 

The extent to which man-made 
global warming has increased the risk 
or strength of the recent drought in 
California has been an active area of re-
search. For example, the severity of the 
2014 drought in California was previ-
ously analyzed and its potential link to 
anthropogenic warming was suggested 
(Diffenbaugh et al. 2015; Wang et al. 
2015, 2014) despite presence of natural 
climate variability (Wang and Schubert 
2014). However, it is important to point 
out from this study that, the increase 
in extreme fire risk is expected within 
the coming decade to exceed that of 

natural variability and this serves as an indication 
that anthropogenic climate warming will likely play a 
significant role in influencing California’s fire season.

 
Conclusions. The 2014 fire season saw the second larg-
est burned area in northern California since 1997, 
next only to 2012, and ranks the highest since 1979 
in the case of extreme fire risk over the entire state. 

Fig. 2.2. (a) Annual mean of the KBDI from the large ensemble 
simulation of the CESM1, (b) fractional area (%) under the 
extreme fire risk, and (c) the extreme fire danger (days yearí1) 
over California. Red (blue) indicates the historical and RCP8.5 
(pre-industrial) runs. Gray lines indicate 50% of the 2nd order 
trend of the KBDI and the extreme fire risk measures based on 
the NLDAS2. To remove the climatological bias, starting points 
are adjusted to be the same as the modeled ensemble mean of 
year 1979.
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Although both fire measures are based upon observa-
tions, these derived variables do exhibit uncertainty 
(Giglio et al. 2013; Xia et al. 2012). The recent extreme 
fire seasons have occurred in a time of drought. Some 
measures of extreme fire risk are also expected to in-
crease in the future despite the overall lack of change 
in the mean fire probability and annual precipitation 
simulated by climate models for the next 50 years. Our 
result, based on the CESM1 outputs, indicates that 
man-made global warming is likely one of the causes 
that will exacerbate the areal extent and frequency 
of extreme fire risk, though the influence of internal 
climate variability on the 2014 and the future fire 
season is difficult to ascertain. 
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Table 34.1. ANTHROPOGENIC INFLUENCE

ON EVENT STRENGTH † ON EVENT LIKELIHOOD †† Total 
Number 

of 
PapersINCREASE DECREASE NOT FOUND OR UNCERTAIN INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Australia (Ch. 31)

Europe (Ch.13)

S. Korea (Ch. 19)

Australia, Adelaide & Melbourne 
(Ch. 29)

Australia, Brisbane (Ch.28)
Heat

Argentina (Ch. 9)

Australia (Ch. 30, Ch. 31)

Australia, Adelaide (Ch. 29)

Australia, Brisbane (Ch. 28)

Europe (Ch. 13)

S. Korea (Ch. 19)

China (Ch. 22)

Melbourne, Australia (Ch. 29) 7

Cold Upper Midwest (Ch.3) Cold Upper Midwest (Ch.3) 1

Winter 
 Storms and 

Snow

Eastern U.S. (Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

Winter 
 Storms and 

Snow
Nepal (Ch. 18)

Eastern U.S.(Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

4

Heavy 
Precipitation Canada** (Ch. 5)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

New Zealand (Ch. 27)

Heavy 
Precipitation

Canada** (Ch. 5)

New Zealand (Ch. 27)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

S. France (Ch. 12)

5

Drought

E. Africa (Ch. 16)

E. Africa* (Ch. 17)

S. Levant (Ch. 14)

Middle East and S.W. Asia 
(Ch. 15)

N.E. Asia (Ch. 21)

Singapore (Ch. 25)

Drought
E. Africa (Ch. 16)

S. Levant (Ch. 14)

Middle East and S.W. Asia (Ch. 15)

E. Africa* (Ch. 17)

N.E. Asia (Ch. 21)

S. E. Brazil (Ch. 8)

Singapore (Ch. 25)

7

Tropical 
Cyclones

Gonzalo (Ch. 11)

W. Pacific (Ch. 24)
Tropical 
Cyclones Hawaii (Ch. 23)

Gonzalo (Ch. 11)

W. Pacific (Ch. 24)
3

Wildfires California (Ch. 2) Wildfires California (Ch. 2) 1

Sea Surface 
Temperature

W. Tropical & N.E. Pacific (Ch. 20)

N.W. Atlantic & N.E. Pacific (Ch. 13)
Sea Surface 

Temperature

W. Tropical & N.E. Pacific 
(Ch. 20)

N.W. Atlantic & N.E. Pacific 
(Ch. 13)

2

Sea Level 
Pressure S. Australia (Ch. 32)

Sea Level 
Pressure S. Australia (Ch. 32) 1

Sea Ice 
Extent Antarctica (Ch. 33)

Sea Ice 
Extent Antarctica (Ch. 33) 1

TOTAL 32

† Papers that did not investigate strength are not listed.

†† Papers that did not investigate likelihood are not listed.

* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the 
surface over the region most affected by the drought.

** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced 
rainfall.

*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days

**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though 
the study did not establish a cause.
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Table 34.1. ANTHROPOGENIC INFLUENCE

ON EVENT STRENGTH † ON EVENT LIKELIHOOD †† Total 
Number 

of 
PapersINCREASE DECREASE NOT FOUND OR UNCERTAIN INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Australia (Ch. 31)

Europe (Ch.13)

S. Korea (Ch. 19)

Australia, Adelaide & Melbourne 
(Ch. 29)

Australia, Brisbane (Ch.28)
Heat

Argentina (Ch. 9)

Australia (Ch. 30, Ch. 31)

Australia, Adelaide (Ch. 29)

Australia, Brisbane (Ch. 28)

Europe (Ch. 13)

S. Korea (Ch. 19)

China (Ch. 22)

Melbourne, Australia (Ch. 29) 7

Cold Upper Midwest (Ch.3) Cold Upper Midwest (Ch.3) 1

Winter 
 Storms and 

Snow

Eastern U.S. (Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

Winter 
 Storms and 

Snow
Nepal (Ch. 18)

Eastern U.S.(Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

4

Heavy 
Precipitation Canada** (Ch. 5)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

New Zealand (Ch. 27)

Heavy 
Precipitation

Canada** (Ch. 5)

New Zealand (Ch. 27)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

S. France (Ch. 12)

5

Drought

E. Africa (Ch. 16)

E. Africa* (Ch. 17)

S. Levant (Ch. 14)

Middle East and S.W. Asia 
(Ch. 15)

N.E. Asia (Ch. 21)

Singapore (Ch. 25)

Drought
E. Africa (Ch. 16)

S. Levant (Ch. 14)
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7
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W. Pacific (Ch. 24)
Tropical 
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3
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Sea Surface 
Temperature
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N.W. Atlantic & N.E. Pacific (Ch. 13)
Sea Surface 

Temperature

W. Tropical & N.E. Pacific 
(Ch. 20)

N.W. Atlantic & N.E. Pacific 
(Ch. 13)

2

Sea Level 
Pressure S. Australia (Ch. 32)

Sea Level 
Pressure S. Australia (Ch. 32) 1

Sea Ice 
Extent Antarctica (Ch. 33)

Sea Ice 
Extent Antarctica (Ch. 33) 1

TOTAL 32

† Papers that did not investigate strength are not listed.

†† Papers that did not investigate likelihood are not listed.

* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the 
surface over the region most affected by the drought.

** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced 
rainfall.

*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days

**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though 
the study did not establish a cause.
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* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the 
surface over the region most affected by the drought.

** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced 
rainfall.

*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days

**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though 
the study did not establish a cause.


